Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Am J Hum Genet ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723632

RESUMEN

To identify credible causal risk variants (CCVs) associated with different histotypes of epithelial ovarian cancer (EOC), we performed genome-wide association analysis for 470,825 genotyped and 10,163,797 imputed SNPs in 25,981 EOC cases and 105,724 controls of European origin. We identified five histotype-specific EOC risk regions (p value <5 × 10-8) and confirmed previously reported associations for 27 risk regions. Conditional analyses identified an additional 11 signals independent of the primary signal at six risk regions (p value <10-5). Fine mapping identified 4,008 CCVs in these regions, of which 1,452 CCVs were located in ovarian cancer-related chromatin marks with significant enrichment in active enhancers, active promoters, and active regions for CCVs from each EOC histotype. Transcriptome-wide association and colocalization analyses across histotypes using tissue-specific and cross-tissue datasets identified 86 candidate susceptibility genes in known EOC risk regions and 32 genes in 23 additional genomic regions that may represent novel EOC risk loci (false discovery rate <0.05). Finally, by integrating genome-wide HiChIP interactome analysis with transcriptome-wide association study (TWAS), variant effect predictor, transcription factor ChIP-seq, and motifbreakR data, we identified candidate gene-CCV interactions at each locus. This included risk loci where TWAS identified one or more candidate susceptibility genes (e.g., HOXD-AS2, HOXD8, and HOXD3 at 2q31) and other loci where no candidate gene was identified (e.g., MYC and PVT1 at 8q24) by TWAS. In summary, this study describes a functional framework and provides a greater understanding of the biological significance of risk alleles and candidate gene targets at EOC susceptibility loci identified by a genome-wide association study.

2.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260576

RESUMEN

Androgen receptor (AR) splice variants, of which ARv7 is the most common, are increased in prostate cancer (PC) that develops resistance to androgen signaling inhibitor drugs, but the extent to which these variants drive AR activity, and whether they have novel functions or dependencies, remain to be determined. We generated a subline of VCaP PC cells (VCaP16) that is resistant to the AR inhibitor enzalutamide (ENZ) and found that AR activity was independent of the full-length AR (ARfl), despite its continued high-level expression, and was instead driven by ARv7. The ARv7 cistrome and transcriptome in VCaP16 cells mirrored that of the ARfl in VCaP cells, although ARv7 chromatin binding was weaker, and strong ARv7 binding sites correlated with higher affinity ARfl binding sites across multiple models and clinical samples. Notably, although ARv7 expression in VCaP cells increased rapidly in response to ENZ, there was a long lag before it gained chromatin binding and transcriptional activity. This lag was associated with an increase in chromatin accessibility, with the AR and nuclear factor I (NFI) motifs being most enriched at these more accessible sites. Moreover, the transcriptional effects of combined NFIB and NFIX knockdown versus ARv7 knockdown were highly correlated. These findings indicate that ARv7 can drive the AR program, but that its activity is dependent on adaptations that increase chromatin accessibility to enhance its intrinsically weak chromatin binding.

4.
Nat Commun ; 14(1): 8084, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057321

RESUMEN

We introduce Promoter-Enhancer-Guided Interaction Networks (PENGUIN), a method for studying protein-protein interaction (PPI) networks within enhancer-promoter interactions. PENGUIN integrates H3K27ac-HiChIP data with tissue-specific PPIs to define enhancer-promoter PPI networks (EPINs). We validated PENGUIN using cancer (LNCaP) and benign (LHSAR) prostate cell lines. Our analysis detected EPIN clusters enriched with the architectural protein CTCF, a regulator of enhancer-promoter interactions. CTCF presence was coupled with the prevalence of prostate cancer (PrCa) single nucleotide polymorphisms (SNPs) within the same EPIN clusters, suggesting functional implications in PrCa. Within the EPINs displaying enrichments in both CTCF and PrCa SNPs, we also show enrichment in oncogenes. We substantiated our identified SNPs through CRISPR/Cas9 knockout and RNAi screens experiments. Here we show that PENGUIN provides insights into the intricate interplay between enhancer-promoter interactions and PPI networks, which are crucial for identifying key genes and potential intervention targets. A dedicated server is available at https://penguin.life.bsc.es/ .


Asunto(s)
Neoplasias de la Próstata , Spheniscidae , Masculino , Animales , Humanos , Spheniscidae/genética , Elementos de Facilitación Genéticos/genética , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata/genética , Proteínas/genética
6.
Nat Med ; 29(11): 2737-2741, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37865722

RESUMEN

Although circulating tumor DNA (ctDNA) assays are increasingly used to inform clinical decisions in cancer care, they have limited ability to identify the transcriptional programs that govern cancer phenotypes and their dynamic changes during the course of disease. To address these limitations, we developed a method for comprehensive epigenomic profiling of cancer from 1 ml of patient plasma. Using an immunoprecipitation-based approach targeting histone modifications and DNA methylation, we measured 1,268 epigenomic profiles in plasma from 433 individuals with one of 15 cancers. Our assay provided a robust proxy for transcriptional activity, allowing us to infer the expression levels of diagnostic markers and drug targets, measure the activity of therapeutically targetable transcription factors and detect epigenetic mechanisms of resistance. This proof-of-concept study in advanced cancers shows how plasma epigenomic profiling has the potential to unlock clinically actionable information that is currently accessible only via direct tissue sampling.


Asunto(s)
ADN Tumoral Circulante , Neoplasias , Humanos , Epigenómica , Biomarcadores de Tumor/genética , Neoplasias/genética , ADN Tumoral Circulante/genética , Biopsia Líquida/métodos , Mutación
7.
Nat Commun ; 14(1): 5118, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612286

RESUMEN

To date, single-nucleotide polymorphisms (SNPs) have been the most intensively investigated class of polymorphisms in genome wide associations studies (GWAS), however, other classes such as insertion-deletion or multiple nucleotide length polymorphism (MNLPs) may also confer disease risk. Multiple reports have shown that the 5p15.33 prostate cancer risk region is a particularly strong expression quantitative trait locus (eQTL) for Iroquois Homeobox 4 (IRX4) transcripts. Here, we demonstrate using epigenome and genome editing that a biallelic (21 and 47 base pairs (bp)) MNLP is the causal variant regulating IRX4 transcript levels. In LNCaP prostate cancer cells (homozygous for the 21 bp short allele), a single copy knock-in of the 47 bp long allele potently alters the chromatin state, enabling de novo functional binding of the androgen receptor (AR) associated with increased chromatin accessibility, Histone 3 lysine 27 acetylation (H3K27ac), and ~3-fold upregulation of IRX4 expression. We further show that an MNLP is amongst the strongest candidate susceptibility variants at two additional prostate cancer risk loci. We estimated that at least 5% of prostate cancer risk loci could be explained by functional non-SNP causal variants, which may have broader implications for other cancers GWAS. More generally, our results underscore the importance of investigating other classes of inherited variation as causal mediators of human traits.


Asunto(s)
Neoplasias , Polimorfismo de Nucleótido Simple , Humanos , Masculino , Cromatina/genética , Acetilación , Alelos , Nucleótidos
8.
Nat Cancer ; 4(5): 699-715, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37038004

RESUMEN

Tumor expression of prostate-specific membrane antigen (PSMA) is lost in 15-20% of men with castration-resistant prostate cancer (CRPC), yet the underlying mechanisms remain poorly defined. In androgen receptor (AR)-positive CRPC, we observed lower PSMA expression in liver lesions versus other sites, suggesting a role of the microenvironment in modulating PSMA. PSMA suppression was associated with promoter histone 3 lysine 27 methylation and higher levels of neutral amino acid transporters, correlating with 18F-fluciclovine uptake on positron emission tomography imaging. While PSMA is regulated by AR, we identified a subset of AR-negative CRPC with high PSMA. HOXB13 and AR co-occupancy at the PSMA enhancer and knockout models point to HOXB13 as an upstream regulator of PSMA in AR-positive and AR-negative prostate cancer. These data demonstrate how PSMA expression is differentially regulated across metastatic lesions and in the context of the AR, which may inform selection for PSMA-targeted therapies and development of complementary biomarkers.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Próstata/metabolismo , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Tomografía de Emisión de Positrones/métodos , Microambiente Tumoral
9.
Nat Commun ; 14(1): 346, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681680

RESUMEN

While the mutational and transcriptional landscapes of renal cell carcinoma (RCC) are well-known, the epigenome is poorly understood. We characterize the epigenome of clear cell (ccRCC), papillary (pRCC), and chromophobe RCC (chRCC) by using ChIP-seq, ATAC-Seq, RNA-seq, and SNP arrays. We integrate 153 individual data sets from 42 patients and nominate 50 histology-specific master transcription factors (MTF) to define RCC histologic subtypes, including EPAS1 and ETS-1 in ccRCC, HNF1B in pRCC, and FOXI1 in chRCC. We confirm histology-specific MTFs via immunohistochemistry including a ccRCC-specific TF, BHLHE41. FOXI1 overexpression with knock-down of EPAS1 in the 786-O ccRCC cell line induces transcriptional upregulation of chRCC-specific genes, TFCP2L1, ATP6V0D2, KIT, and INSRR, implicating FOXI1 as a MTF for chRCC. Integrating RCC GWAS risk SNPs with H3K27ac ChIP-seq and ATAC-seq data reveals that risk-variants are significantly enriched in allelically-imbalanced peaks. This epigenomic atlas in primary human samples provides a resource for future investigation.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Epigenómica , Factores de Transcripción/genética , Oncogenes , Factores de Transcripción Forkhead/genética
10.
Nat Commun ; 13(1): 7367, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36450752

RESUMEN

Androgen receptor (AR) drives prostate cancer (PCa) development and progression. AR chromatin binding profiles are highly plastic and form recurrent programmatic changes that differentiate disease stages, subtypes and patient outcomes. While prior studies focused on concordance between patient subgroups, inter-tumor heterogeneity of AR enhancer selectivity remains unexplored. Here we report high levels of AR chromatin binding heterogeneity in human primary prostate tumors, that overlap with heterogeneity observed in healthy prostate epithelium. Such heterogeneity has functional consequences, as somatic mutations converge on commonly-shared AR sites in primary over metastatic tissues. In contrast, less-frequently shared AR sites associate strongly with AR-driven gene expression, while such heterogeneous AR enhancer usage also distinguishes patients' outcome. These findings indicate that epigenetic heterogeneity in primary disease is directly informative for risk of biochemical relapse. Cumulatively, our results illustrate a high level of AR enhancer heterogeneity in primary PCa driving differential expression and clinical impact.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Secuencias Reguladoras de Ácidos Nucleicos , Neoplasias de la Próstata/genética , Próstata , Cromatina
11.
Nat Genet ; 54(9): 1364-1375, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071171

RESUMEN

Many genetic variants affect disease risk by altering context-dependent gene regulation. Such variants are difficult to study mechanistically using current methods that link genetic variation to steady-state gene expression levels, such as expression quantitative trait loci (eQTLs). To address this challenge, we developed the cistrome-wide association study (CWAS), a framework for identifying genotypic and allele-specific effects on chromatin that are also associated with disease. In prostate cancer, CWAS identified regulatory elements and androgen receptor-binding sites that explained the association at 52 of 98 known prostate cancer risk loci and discovered 17 additional risk loci. CWAS implicated key developmental transcription factors in prostate cancer risk that are overlooked by eQTL-based approaches due to context-dependent gene regulation. We experimentally validated associations and demonstrated the extensibility of CWAS to additional epigenomic datasets and phenotypes, including response to prostate cancer treatment. CWAS is a powerful and biologically interpretable paradigm for studying variants that influence traits by affecting transcriptional regulation.


Asunto(s)
Cromatina , Neoplasias de la Próstata , Cromatina/genética , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Neoplasias de la Próstata/genética , Sitios de Carácter Cuantitativo/genética
12.
Cancer Discov ; 12(9): 2074-2097, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35754340

RESUMEN

In prostate cancer, androgen receptor (AR)-targeting agents are very effective in various disease stages. However, therapy resistance inevitably occurs, and little is known about how tumor cells adapt to bypass AR suppression. Here, we performed integrative multiomics analyses on tissues isolated before and after 3 months of AR-targeting enzalutamide monotherapy from patients with high-risk prostate cancer enrolled in a neoadjuvant clinical trial. Transcriptomic analyses demonstrated that AR inhibition drove tumors toward a neuroendocrine-like disease state. Additionally, epigenomic profiling revealed massive enzalutamide-induced reprogramming of pioneer factor FOXA1 from inactive chromatin sites toward active cis-regulatory elements that dictate prosurvival signals. Notably, treatment-induced FOXA1 sites were enriched for the circadian clock component ARNTL. Posttreatment ARNTL levels were associated with patients' clinical outcomes, and ARNTL knockout strongly decreased prostate cancer cell growth. Our data highlight a remarkable cistromic plasticity of FOXA1 following AR-targeted therapy and revealed an acquired dependency on the circadian regulator ARNTL, a novel candidate therapeutic target. SIGNIFICANCE: Understanding how prostate cancers adapt to AR-targeted interventions is critical for identifying novel drug targets to improve the clinical management of treatment-resistant disease. Our study revealed an enzalutamide-induced epigenomic plasticity toward prosurvival signaling and uncovered the circadian regulator ARNTL as an acquired vulnerability after AR inhibition, presenting a novel lead for therapeutic development. See related commentary by Zhang et al., p. 2017. This article is highlighted in the In This Issue feature, p. 2007.


Asunto(s)
Andrógenos , Neoplasias de la Próstata Resistentes a la Castración , Factores de Transcripción ARNTL/genética , Andrógenos/farmacología , Andrógenos/uso terapéutico , Línea Celular Tumoral , Ritmo Circadiano , Resistencia a Antineoplásicos/genética , Epigenómica , Humanos , Masculino , Nitrilos/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética
13.
Cancer Res ; 82(16): 2848-2859, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35731919

RESUMEN

African-American (AA) men are more likely to be diagnosed with and die from prostate cancer than European American (EA) men. Despite the central role of the androgen receptor (AR) transcription factor in prostate cancer, little is known about the contribution of epigenetics to observed racial disparities. We performed AR chromatin immunoprecipitation sequencing on primary prostate tumors from AA and EA men, finding that sites with greater AR binding intensity in AA relative to EA prostate cancer are enriched for lipid metabolism and immune response genes. Integration with transcriptomic and metabolomic data demonstrated coinciding upregulation of lipid metabolism gene expression and increased lipid levels in AA prostate cancer. In a metastatic prostate cancer cohort, upregulated lipid metabolism associated with poor prognosis. These findings offer the first insights into ancestry-specific differences in the prostate cancer AR cistrome. The data suggest a model whereby increased androgen signaling may contribute to higher levels of lipid metabolism, immune response, and cytokine signaling in AA prostate tumors. Given the association of upregulated lipogenesis with prostate cancer progression, our study provides a plausible biological explanation for the higher incidence and aggressiveness of prostate cancer observed in AA men. SIGNIFICANCE: With immunotherapies and inhibitors of metabolic enzymes in clinical development, the altered lipid metabolism and immune response in African-American men provides potential therapeutic opportunities to attenuate racial disparities in prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Negro o Afroamericano/genética , Humanos , Inmunidad , Metabolismo de los Lípidos/genética , Masculino , Neoplasias de la Próstata/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Regulación hacia Arriba
14.
JCI Insight ; 7(10)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35603787

RESUMEN

The androgen receptor (AR) is a master transcription factor that regulates prostate cancer (PC) development and progression. Inhibition of AR signaling by androgen deprivation is the first-line therapy with initial efficacy for advanced and recurrent PC. Paradoxically, supraphysiological levels of testosterone (SPT) also inhibit PC progression. However, as with any therapy, not all patients show a therapeutic benefit, and responses differ widely in magnitude and duration. In this study, we evaluated whether differences in the AR cistrome before treatment can distinguish between SPT-responding (R) and -nonresponding (NR) tumors. We provide the first preclinical evidence to our knowledge that SPT-R tumors exhibit a distinct AR cistrome when compared with SPT-NR tumors, indicating a differential biological role of the AR. We applied an integrated analysis of ChIP-Seq and RNA-Seq to the pretreatment tumors and identified an SPT-R signature that distinguishes R and NR tumors. Because transcriptomes of SPT-treated clinical specimens are not available, we interrogated available castration-resistant PC (CRPC) transcriptomes and showed that the SPT-R signature is associated with improved survival and has the potential to identify patients who would respond to SPT. These findings provide an opportunity to identify the subset of patients with CRPC who would benefit from SPT therapy.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Antagonistas de Andrógenos , Humanos , Masculino , Recurrencia Local de Neoplasia , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Testosterona
15.
Cell Rep Med ; 3(3): 100542, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35492879

RESUMEN

Endometriosis is associated with increased risk of epithelial ovarian cancers (EOCs). Using data from large endometriosis and EOC genome-wide association meta-analyses, we estimate the genetic correlation and evaluate the causal relationship between genetic liability to endometriosis and EOC histotypes, and identify shared susceptibility loci. We estimate a significant genetic correlation (rg) between endometriosis and clear cell (rg = 0.71), endometrioid (rg = 0.48), and high-grade serous (rg = 0.19) ovarian cancer, associations supported by Mendelian randomization analyses. Bivariate meta-analysis identified 28 loci associated with both endometriosis and EOC, including 19 with evidence for a shared underlying association signal. Differences in the shared risk suggest different underlying pathways may contribute to the relationship between endometriosis and the different histotypes. Functional annotation using transcriptomic and epigenomic profiles of relevant tissues/cells highlights several target genes. This comprehensive analysis reveals profound genetic overlap between endometriosis and EOC histotypes with valuable genomic targets for understanding the biological mechanisms linking the diseases.


Asunto(s)
Endometriosis , Neoplasias Glandulares y Epiteliales , Neoplasias Ováricas , Carcinoma Epitelial de Ovario/genética , Endometriosis/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias Glandulares y Epiteliales/complicaciones , Neoplasias Ováricas/genética
16.
Elife ; 112022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550030

RESUMEN

Metastatic castration-resistant prostate cancers (mCRPCs) are treated with therapies that antagonize the androgen receptor (AR). Nearly all patients develop resistance to AR-targeted therapies (ARTs). Our previous work identified CREB5 as an upregulated target gene in human mCRPC that promoted resistance to all clinically approved ART. The mechanisms by which CREB5 promotes progression of mCRPC or other cancers remains elusive. Integrating ChIP-seq and rapid immunoprecipitation and mass spectroscopy of endogenous proteins, we report that cells overexpressing CREB5 demonstrate extensive reprogramming of nuclear protein-protein interactions in response to the ART agent enzalutamide. Specifically, CREB5 physically interacts with AR, the pioneering actor FOXA1, and other known co-factors of AR and FOXA1 at transcription regulatory elements recently found to be active in mCRPC patients. We identified a subset of CREB5/FOXA1 co-interacting nuclear factors that have critical functions for AR transcription (GRHL2, HOXB13) while others (TBX3, NFIC) regulated cell viability and ART resistance and were amplified or overexpressed in mCRPC. Upon examining the nuclear protein interactions and the impact of CREB5 expression on the mCRPC patient transcriptome, we found that CREB5 was associated with Wnt signaling and epithelial to mesenchymal transitions, implicating these pathways in CREB5/FOXA1-mediated ART resistance. Overall, these observations define the molecular interactions among CREB5, FOXA1, and pathways that promote ART resistance.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proteína de Unión al Elemento de Respuesta al AMP Cíclico , Factor Nuclear 3-alfa del Hepatocito/genética , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
17.
Nat Commun ; 13(1): 2559, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562350

RESUMEN

c-MYC (MYC) is a major driver of prostate cancer tumorigenesis and progression. Although MYC is overexpressed in both early and metastatic disease and associated with poor survival, its impact on prostate transcriptional reprogramming remains elusive. We demonstrate that MYC overexpression significantly diminishes the androgen receptor (AR) transcriptional program (the set of genes directly targeted by the AR protein) in luminal prostate cells without altering AR expression. Analyses of clinical specimens reveal that concurrent low AR and high MYC transcriptional programs accelerate prostate cancer progression toward a metastatic, castration-resistant disease. Data integration of single-cell transcriptomics together with ChIP-seq uncover an increase in RNA polymerase II (Pol II) promoter-proximal pausing at AR-dependent genes following MYC overexpression without an accompanying deactivation of AR-bound enhancers. Altogether, our findings suggest that MYC overexpression antagonizes the canonical AR transcriptional program and contributes to prostate tumor initiation and progression by disrupting transcriptional pause release at AR-regulated genes.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Genes myc , Humanos , Masculino , Próstata/patología , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-myc , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
18.
Cell Rep ; 38(8): 110417, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35196489

RESUMEN

Androgen receptor (AR) signaling is the central driver of prostate cancer across disease states. While androgen deprivation therapy (ADT) is effective in the initial treatment of prostate cancer, resistance to ADT or to next-generation androgen pathway inhibitors invariably arises, most commonly through the re-activation of the AR axis. Thus, orthogonal approaches to inhibit AR signaling in advanced prostate cancer are essential. Here, via genome-scale CRISPR-Cas9 screening, we identify protein arginine methyltransferase 1 (PRMT1) as a critical mediator of AR expression and signaling. PRMT1 regulates the recruitment of AR to genomic target sites and the inhibition of PRMT1 impairs AR binding at lineage-specific enhancers, leading to decreased expression of key oncogenes, including AR itself. In addition, AR-driven prostate cancer cells are uniquely susceptible to combined AR and PRMT1 inhibition. Our findings implicate PRMT1 as a key regulator of AR output and provide a preclinical framework for co-targeting of AR and PRMT1 in advanced prostate cancer.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal
19.
Clin Cancer Res ; 28(5): 928-938, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907080

RESUMEN

PURPOSE: Neuroendocrine prostate cancer (NEPC) is a resistance phenotype that emerges in men with metastatic castration-resistant prostate adenocarcinoma (CR-PRAD) and has important clinical implications, but is challenging to detect in practice. Herein, we report a novel tissue-informed epigenetic approach to noninvasively detect NEPC. EXPERIMENTAL DESIGN: We first performed methylated immunoprecipitation and high-throughput sequencing (MeDIP-seq) on a training set of tumors, identified differentially methylated regions between NEPC and CR-PRAD, and built a model to predict the presence of NEPC (termed NEPC Risk Score). We then performed MeDIP-seq on cell-free DNA (cfDNA) from two independent cohorts of men with NEPC or CR-PRAD and assessed the accuracy of the model to predict the presence NEPC. RESULTS: The test cohort comprised cfDNA samples from 48 men, 9 with NEPC and 39 with CR-PRAD. NEPC Risk Scores were significantly higher in men with NEPC than CR-PRAD (P = 4.3 × 10-7) and discriminated between NEPC and CR-PRAD with high accuracy (AUROC 0.96). The optimal NEPC Risk Score cutoff demonstrated 100% sensitivity and 90% specificity for detecting NEPC. The independent, multi-institutional validation cohort included cfDNA from 53 men, including 12 with NEPC and 41 with CR-PRAD. NEPC Risk Scores were significantly higher in men with NEPC than CR-PRAD (P = 7.5×10-12) and perfectly discriminated NEPC from CR-PRAD (AUROC 1.0). Applying the predefined NEPC Risk Score cutoff to the validation cohort resulted in 100% sensitivity and 95% specificity for detecting NEPC. CONCLUSIONS: Tissue-informed cfDNA methylation analysis is a promising approach for noninvasive detection of NEPC in men with advanced prostate cancer.


Asunto(s)
Carcinoma Neuroendocrino , Ácidos Nucleicos Libres de Células , Tumores Neuroendocrinos , Neoplasias de la Próstata , Carcinoma Neuroendocrino/genética , Ácidos Nucleicos Libres de Células/genética , Metilación de ADN , Humanos , Masculino , Tumores Neuroendocrinos/patología , Próstata/patología , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo
20.
Nat Commun ; 12(1): 7308, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911936

RESUMEN

Androgen receptor (AR) in prostate cancer (PCa) can drive transcriptional repression of multiple genes including MYC, and supraphysiological androgen is effective in some patients. Here, we show that this repression is independent of AR chromatin binding and driven by coactivator redistribution, and through chromatin conformation capture methods show disruption of the interaction between the MYC super-enhancer within the PCAT1 gene and the MYC promoter. Conversely, androgen deprivation in vitro and in vivo increases MYC expression. In parallel, global AR activity is suppressed by MYC overexpression, consistent with coactivator redistribution. These suppressive effects of AR and MYC are mitigated at shared AR/MYC binding sites, which also have markedly higher levels of H3K27 acetylation, indicating enrichment for functional enhancers. These findings demonstrate an intricate balance between AR and MYC, and indicate that increased MYC in response to androgen deprivation contributes to castration-resistant PCa, while decreased MYC may contribute to responses to supraphysiological androgen therapy.


Asunto(s)
Elementos de Facilitación Genéticos , Proteína Oncogénica p55(v-myc)/genética , Receptores Androgénicos/genética , Andrógenos/metabolismo , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Proteína Oncogénica p55(v-myc)/metabolismo , Regiones Promotoras Genéticas , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA